Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaerobe ; 83: 102782, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717850

RESUMO

OBJECTIVES: This study evaluated the effect of particle size and dosage of granular activated carbon (GAC) on methane production from the anaerobic digestion of raw effluent (RE) of swine wastewater, and the solid (SF) and liquid (LF) fractions. The effect of temperature using the selected size and dosage of GAC was also evaluated. METHODS: 60 mL of swine wastewater were inoculated with anaerobic granular sludge and GAC at different dosages and particle size. The cultures were incubated at different temperatures at 130 rpm. The kinetic parameters from experimental data were obtained using the Gompertz model. RESULTS: The cultures with the LF and GAC (75-150 µm, 15 g/L) increased 1.87-fold the methane production compared to the control without GAC. The GAC at 75-150 µm showed lower lag phases and higher Rmax than the cultures with GAC at 590-600 µm. The cumulative methane production at 45 °C with the RE + GAC was 7.4-fold higher than the control. Moreover, methane production at 45 °C significantly increased with the cultures LF + GAC (6.0-fold) and SF + GAC (2.0-fold). The highest production of volatile fatty acids and ammonium was obtained at 45 °C regardless of the substrate and the addition of GAC contributed to a higher extent than the cultures lacking GAC. In most cases, the kinetic parameters at 30 °C and 37 °C were also higher with GAC. CONCLUSIONS: GAC contributed to improving the fermentative and methanogenesis stages during the anaerobic digestion of fractions, evidenced by an improvement in the kinetic parameters.


Assuntos
Carvão Vegetal , Águas Residuárias , Animais , Suínos , Anaerobiose , Temperatura , Reatores Biológicos , Metano
2.
J Hazard Mater ; 338: 233-240, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28570877

RESUMO

In this research was immobilized anthraquinone-2-sulfonate (AQS) on granular activated carbon (GAC) to evaluate its capacity to reduce congo red (CR) in batch reactor and continuous UASB reactors. The removal of p-cresol coupled to the reduction of CR was also evaluated. Results show that the immobilization of AQS on GAC (GAC-AQS) achieved 0.469mmol/g, improving 2.85-times the electron-transferring capacity compared to unmodified GAC. In batch, incubations with GAC-AQS achieved a rate of decolorization of 2.64-fold higher than the observed with GAC. Decolorization efficiencies in UASB reactor with GAC-AQS were 83.9, 82, and 79.9% for periods I, II, and III; these values were 14.9-22.8% higher than the obtained by reactor with unmodified GAC using glucose as energy source. In the fourth period, glucose and p-cresol were simultaneously fed, increasing the decolorization efficiency to 87% for GAC-AQS and 72% for GAC. Finally, reactors efficiency decreased when p-cresol was the only energy source, but systems gradually recovered the decolorization efficiency up to 84% (GAC-AQS) and 71% (GAC) after 250 d. This study demonstrates the longest and efficient continuous UASB reactor operation for the reduction of electron-accepting contaminant in presence of quinone-functionalized GAC, but also using a recalcitrant pollutant as electron donor.


Assuntos
Antraquinonas/química , Compostos Azo/química , Reatores Biológicos , Carbono/química , Vermelho Congo/química , Cresóis/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biotransformação , Cor , Oxirredução , Termodinâmica , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...